

ADVANCED GCE MATHEMATICS Core Mathematics 4

4724

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Friday 15 January 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 Find the quotient and the remainder when $x^4 + 11x^3 + 28x^2 + 3x + 1$ is divided by $x^2 + 5x + 2$. [4]
- 2 Points A, B and C have position vectors $-5\mathbf{i} 10\mathbf{j} + 12\mathbf{k}$, $\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $3\mathbf{i} + 6\mathbf{j} + p\mathbf{k}$ respectively, where p is a constant.
 - (i) Given that angle $ABC = 90^{\circ}$, find the value of *p*. [4]
 - (ii) Given instead that *ABC* is a straight line, find the value of *p*. [2]
- 3 By expressing $\cos 2x$ in terms of $\cos x$, find the exact value of $\int_{\frac{1}{4\pi}}^{\frac{1}{3\pi}} \frac{\cos 2x}{\cos^2 x} dx.$ [5]
- 4 Use the substitution $u = 2 + \ln t$ to find the exact value of

$$\int_{1}^{e} \frac{1}{t(2+\ln t)^2} \,\mathrm{d}t.$$
 [6]

- 5 (i) Expand $(1 + x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^2 . [2]
 - (ii) (a) Hence, or otherwise, expand $(8 + 16x)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^2 . [4]
 - (b) State the set of values of x for which the expansion in part (ii) (a) is valid. [1]
- 6 A curve has parametric equations

$$x = 9t - \ln(9t), \quad y = t^3 - \ln(t^3).$$

Show that there is only one value of t for which $\frac{dy}{dx} = 3$ and state that value. [6]

- 7 Find the equation of the normal to the curve $x^3 + 2x^2y = y^3 + 15$ at the point (2, 1), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [8]
- 8 (i) State the derivative of $e^{\cos x}$. [1]
 - (ii) Hence use integration by parts to find the exact value of

$$\int_0^{\frac{1}{2}\pi} \cos x \sin x \, \mathrm{e}^{\cos x} \, \mathrm{d}x. \tag{6}$$

9 The equation of a straight line *l* is $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$. *O* is the origin.

(i) The point P on l is given by $t = 1$. Calculate the acute angle between OP and l.	[4]
(ii) Find the position vector of the point Q on l such that OQ is perpendicular to l .	[4]

[2]

[4]

(iii) Find the length of OQ.

10 (i) Express
$$\frac{1}{(3-x)(6-x)}$$
 in partial fractions. [2]

(ii) In a chemical reaction, the amount x grams of a substance at time t seconds is related to the rate at which x is changing by the equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(3-x)(6-x),$$

where *k* is a constant. When t = 0, x = 0 and when t = 1, x = 1.

- (a) Show that $k = \frac{1}{3} \ln \frac{5}{4}$. [7]
- (b) Find the value of x when t = 2.

3

4724 Core Mathematics 4

1		Long division method			
		Correct leading term x^2 in quotient	B1		
		Evidence of correct div process	M1		Sufficient to convince
		$(Quotient =) x^2 + 6x - 4$	A1		
		(Remainder =) 11x + 9	A1		
		$\frac{1 \text{dentity method}}{4 + 11 + 3 + 20 + 2} = 2 + 1 + 2 \left(\frac{2}{2} + 5 + 2 \right) = 0$	N / 1		
		$x^{+} + 11x^{3} + 28x^{2} + 3x + 1 = Q(x^{2} + 5x + 2) + R$	MI		
		$Q = ax^{2} + bx + c$ or $x^{2} + bx + c$; $R = dx + e$ & ≥ 3 ops	M1		N.B. $a = 1 \Rightarrow 1$ of the 3 ops
		a = 1, b = 6, c = -4, d = 11, e = 9 (for all 5)	A2		S.R. $\underline{B}1$ for 3 of these
			4		
			-)		
2	(i)	Find at least 2 of $(AB \text{ or } BA)$, $(BC \text{ or } CB)$, $(AC \text{ or } CA)$	á) M1		irrespect of label; any notation
		Use correct method to find scal prod of any 2 vecto $\frac{1}{\sqrt{2}}$	rs M1		or use corr meth for modulus
		Use $\overrightarrow{AB.BC} = 0$ or $\frac{AB.BC}{ AB BC } = 0$	M1		or use $\left \overrightarrow{AB} \right ^2 + \left \overrightarrow{BC} \right ^2 = \left \overrightarrow{AC} \right ^2$
		Obtain $p = 1$ (dep 3 @ M1)	A1	4	
	()	Use sound motion of communicate restance			
	(11)	Obtain a sector of appropriate vectors		•	or scalar product method
		p = -8	AI	Z	
_			U		
3		Use $\cos 2x = a \cos^2 x + b / \pm \cos^2 x - \sin^2 x / 1 - 2\sin^2 x$	*M1		
		Obtain $\lambda + \mu \sec^2 x$ dep	o*M1		using 'reasonable' Pythag attempt
		$\int \lambda + \mu \sec^2 x \mathrm{d}x = \lambda x + \mu \tan x$	A1		(λ or μ may be 0 here/prev line)
		Obtain correct result $2x - \tan x$	A1		no follow-through
		$\frac{1}{6}\pi - \sqrt{3} + 1$ ISW	A1		exact answer required
		•	5		
4		Attempt to connect du and dt or find $\frac{du}{dt}$ or $\frac{dt}{du}$	M1		not $du = dt$ but no accuracy
		$du = \frac{1}{t} dt$ or $\frac{du}{dt} = \frac{1}{t}$ or $dt = e^{u-2} du$ or $\frac{dt}{du} = e^{u-2}$	A1		
		Indefine $\rightarrow \int \frac{1}{u^2} (du)$	A1		no t or dt in evidence
		$=-\frac{1}{2}$	A1		
		Attempt to change limits if working with $f(u)$	M1		or re-subst & use 1 and e
		$\frac{1}{6}$ ISW	A1		In e must be changed to 1, In 1 to 0
		U	6		
			· ·		

5	(i) $(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \dots$	B1					
	$\ldots -\frac{1}{9}x^2$	B1	2	$-\frac{2}{18}x^2$ acceptable			
-	(ii) (a) $(8+16x)^{\frac{1}{3}} = 8^{\frac{1}{3}} (1+2x)^{\frac{1}{3}}$	B1		not $16^{\frac{1}{3}}(\frac{1}{2}+x)^{\frac{1}{3}}$			
	$(1+2x)^{\frac{1}{3}}$ = their (i) expansion with 2x replacing x	M1		not dep on prev B1			
	$= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$	√A1		$-\frac{8}{18}x^2$ acceptable			
	Required expansion = 2 (expansion just found)	√B1	4	accept equiv fractions			
	<u>N.B.</u> . If not based on part (i), award M1 for $8^{\frac{1}{3}} + \frac{1}{3} \cdot 8^{-\frac{2}{3}} (16x) + \frac{\frac{1}{3} \cdot -\frac{2}{3}}{1 \cdot 2} \cdot 8^{-\frac{5}{3}} (16x)^2$, allowing $16x^2$ for						
	$(16x)^2$, with 3 @ A1 for 2+ $\frac{4}{3}x\frac{8}{9}x^2$, accepting equivalent fractions & ISW						
	(ii) (b) $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1	1	no equality			
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1		quoted/implied			
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 9 - \frac{9}{9t} \qquad \text{ISW}$	B1					
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \frac{3t^2}{t^3} \text{ISW}$	B1					
	Stating/implying $\frac{3t^2 - \frac{3}{t}}{9 - \frac{1}{t}} = 3 \implies t^2 = 9 \text{ or } t^3 - 9t = 0$	A1		WWW, totally correct at this stage			
	t = 3 as final ans with clear log indication of invalidity of -3 ; ignore (non) mention of $t = 0$	A2		<u>S.R.</u> A1 if $t = \pm 3$ or $t = -3$ or $(t = 3 \& wrong/no indication)$			
	d (_)	6					
7	Treat $\frac{d}{dx}(x^2y)$ as a product	M1					
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^3\right) = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1					
	$3x^2 + 2x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 4xy = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	A1		Ignore $\frac{dy}{dx}$ = if not used			
	Subst (2, 1) and solve for $\frac{dy}{dx}$ or vice-versa	M1					
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4 \qquad \text{WWW}$	A1					
	grad normal = $-\frac{1}{\text{their } \frac{dy}{dx}}$	√A1		stated or used			
	Find eqn of line, through (2, 1), with either gradient	M1		using their $\frac{dy}{dx}$ or $-\frac{1}{\text{their}}\frac{dy}{dx}$			
	x - 4y + 2 = 0	A1 8		AEF with integral coefficients			

8 (i) $-\sin x e^{\cos x}$ B1 1 (ii) $\int \sin x \, \mathrm{e}^{\cos x} \mathrm{d}x = -\mathrm{e}^{\cos x}$ B1 anywhere in part (ii) Parts with split $u = \cos x$, $dv = \sin x e^{\cos x}$ result $f(x) + \int g(x) dx$ M1 Indef Integ, 1st stage $-\cos x e^{\cos x} - \int \sin x e^{\cos x} dx$ accept ... $-\int -e^{\cos x} - \sin x \, dx$ A1 Second stage = $-\cos x e^{\cos x} + e^{\cos x}$ *A1 Final answer = 1dep*A2 6 7 **9** (i) *P* is $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$ **B**1 direction vector of ℓ is $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and of \overrightarrow{OP} is their P √B1 Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ for $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and their OP M1 $\theta = 35.3$ or better (0.615... rad) A1 4 ------(ii) Use $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3+t \\ 1-t \\ 1+2t \end{pmatrix} = 0$ M1 1(3+t)-1(1-t)+2(1+2t)=0A1 $t = -\frac{2}{2}$ A1 Subst. into $\begin{pmatrix} 3+t\\ 1-t\\ 1+2t \end{pmatrix}$ to produce $\begin{pmatrix} \frac{7}{3}\\ \frac{5}{3}\\ -\frac{1}{3} \end{pmatrix}$ ISW A1 4 (iii) Use $\sqrt{x^2 + y^2 + z^2}$ where $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is part (ii) answer M1 Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better (2.8867513....) A1 2 10

Mark Scheme

January 2010

10 (i)
$$\frac{1}{3-x} \dots -\frac{1}{6-x}$$
 B1+1 2
(ii) (a) Separate variables $\int \frac{1}{(3-x)(6-x)} dx = \int k dt$ M1 or invert both sides
Style: For the M1, dx & dt must appear on correct sides or there must be \int sign on both sides
Change $\frac{1}{(3-x)(6-x)}$ into partial fractions from (i) $\sqrt{B1}$
 $\int \frac{A}{3-x} dx = \left(-A \text{ or } -\frac{1}{A}\right) \ln(3-x)$ B1 or $\int \frac{B}{6-x} dx = \left(-B \text{ or } -\frac{1}{B}\right) \ln(6-x)$
 $-\frac{1}{3} \ln(3-x) + \frac{1}{3} \ln(6-x) = kt (+c)$ $\sqrt{A1}$ f.t. from wrong multiples in (i)
Subst $(x = 0, t = 0)$ & $(x = 1, t = 1)$ into eqn with 'c' M1 and solve for 'k'
Use $\ln a + \ln b = \ln ab$ or $\ln a - \ln b = \ln \frac{a}{b}$ M1
Obtain $k = \frac{1}{3} \ln \frac{5}{4}$ with sufficient working & WWW A1 7 AG
(b) Substitute $k = \frac{1}{3} \ln \frac{5}{4}$, $t = 2$ & their value of 'c' *M1
Reduce to an eqn of form $\frac{6-x}{3-x} = \lambda$ dep*M1 where λ is a const
Obtain $x = \frac{27}{17}$ or 1.6 or better (1.5882353...) A2 4 S.R. A1 $\sqrt{10}$ for $x = \frac{3\lambda - 6}{\lambda - 1}$